
Learning to Communicate: A Machine Learning Framework

for Heterogeneous Multi-Agent Robotic Systems

Hyung-Jin Yoon∗, Huaiyu Chen†, Kehan Long‡, Heling Zhang§,

Aditya Gahlawat¶, Donghwan Lee‖, and Naira Hovakimyan∗∗

We present a machine learning framework for multi-agent systems to learn both the optimal

policy for maximizing the rewards and the encoding of the high dimensional visual observa-

tion. The encoding is useful for sharing local visual observations with other agents under

communication resource constraints. The actor-encoder encodes the raw images and chooses

an action based on local observations and messages sent by the other agents. The machine

learning agent generates not only an actuator command to the physical device, but also a

communication message to the other agents. We formulate a reinforcement learning problem,

which extends the action space to consider the communication action as well. The feasibility

of the reinforcement learning framework is demonstrated using a 3D simulation environment

with two collaborating agents. The environment provides realistic visual observations to be

used and shared between the two agents.

I. Introduction
Communication is crucial for the satisfactory performance of multi-agent systems. Different sensors and actuators

of the agents can be better used when their individually collected information is shared and collaboratively processed.

However, designing communication protocols suitable for multi-agent systems is not a trivial task. The low-cost,

high-resolution image sensors can provide a large amount of information, which might be hard to process in real time.

Moreover, the transmission of information is constrained by the limited bandwidth of the communication network. It

is therefore desirable for the communication protocol to compress the visual data to allow its transmission over the

resource-constrained network, provided that the vital for the collaborative mission execution is not lost. In light of

these considerations, we propose a machine learning framework for multi-agent systems, where visual information

is shared between the agents to accomplish collaborative tasks. The proposed framework employs a reinforcement

learning problem formulation. The control policy of each agent dictates not only the local actuator commands, but

also the communication messages for transmission to the other agents. The approach is tested in a 3D simulation

environment, developed using a game/virtual reality development tool. As an experimental validation, we implement

the proposed algorithm for collaborative search in a game environment using a team of a high-altitude and low-altitude

aerial vehicles.

It is important to mention that application of the proposed approach to real-world environment for cooperative

flight missions, as the one in [1], should be considered only after the safety issues of the end-to-end deep reinforcement

learning (DRL) are addressed. Training the deep neural network with a large number of parameters requires an even

larger number of training samples. Typically, training of DRL takes a few millions of time-steps [2, 3], which is not

affordable in real flight missions. An incidence of catastrophic failure is very likely during the transient of this long

training period. This fundamental drawback has prevented safety-critical applications of deep learning methods and

the variants of those. However, the capability to process high-dimensional sensor signals, such as camera images, have

attracted a broad audience to develop vision-based control applications. Some of the evident examples in safety-critical

applications are collision avoidance maneuvers that cannot afford trials and errors by DRL. A possible solution to this

issue is to restrict the role of DRL in the optimization, while ensuring the safety during the transient by model-based

controllers [4]. We note that safe reinforcement learning is not in the scope of this paper. Instead, we focus on the

∗Graduate Student, Mechanical Engineering, University of Illinois at Urbana-Champaign
†Undergraduate Student, Mechanical Engineering, University of Illinois at Urbana-Champaign
‡Undergraduate Student, Department of Mathematics, University of Illinois at Urbana-Champaign
§Undergraduate Student, Electrical & Computer Engineering, University of Illinois at Urbana-Champaign
¶Postdoctoral Research Associate, Mechanical Engineering, University of Illinois at Urbana-Champaign
‖Postdoctoral Research Associate, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

∗∗Professor, Mechanical Engineering, University of Illinois at Urbana-Champaign AIAA Fellow.

1

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

 AIAA Scitech 2019 Forum

 7-11 January 2019, San Diego, California

 10.2514/6.2019-1456

 Copyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-1456&domain=pdf&date_stamp=2019-01-06

communication between the agents and the centralized policy improvement module (central critic) within a cooperative

decision making framework. Our work of exploring the potential of DRL for multi-agent systems is a small step to

bring DRL from experimental science to practical engineering.

A. Related Work

Reinforcement learning has been applied to various multi-agent systems [5–8]. Since the agents are co-evolving

together, traditional reinforcement learning approaches such as Q-learning [9] do not perform well as they do with

single-agent applications. For example, independent reinforcement learning formulations for multi-agent systems,

where agents do not exchange any information and treat the other agents as a part of the environment, have displayed

poor performance [6]. A possible reason for this could be that the co-evolving of the other agents breaks the Markov

assumption of the Markov decision process, which is the typical model for most reinforcement learning techniques.

The framework of centralized training with decentralized execution has been successfully applied to multi-agent

reinforcement learning problems [7, 8]. Since this framework allows a central critic to access global information

generated by the agents, the critic can still rely on the Markov assumption to estimate policy evaluation using the

Bellman equation [10]. However, this framework relies on the communication of all observations and actions from

all local agents for the centralized training despite formulating distributed control policies. In the case of visual

observations, sending high-resolution images from many locally distributed agents over a wireless network can be

costly or infeasible.

Information sharing between agents in the context of reinforcement learning has been explored in [11, 12]. The

authors of the cited papers demonstrate that the reinforcement learning problem formulation can be useful to find

communication policies (protocols). This is accomplished by including performance metrics (to be optimized) in the

rewards of the underlying Markov decision process. In a similar fashion, we use the reward function to ensure that the

messages capture enough information for the centralized critic to evaluate local policies.

In this paper, we extend the framework of centralized training with decentralized execution to include additional

optimization of the inter-agent communication. Specifically, we employ the multi-agent deep deterministic policy

gradient (MADDPG) algorithm, introduced in [7], and extend the action space to consider communication between the

agents and the central critic. Also, we consider autoencoders [13] to compress high dimensional visual observations

into low dimensional features. This allows each agent to send local visual observations to the central critic, while not

violating the constraints of communication resource usage.

The remainder of the paper is organized as follows. In Section II, the proposed reinforcement learning method that

considers communication actions for a multi-agent system is presented. In Section III, we introduce a 3D simulation

environment and implement the proposed reinforcement learning method in the simulation environment. In Section

IV, the simulation results are analyzed. Section V summarizes the paper.

II. Method
We begin by formulating the Markov decision process (MDP) for multi-agent systems. The MDP for N agents

is defined by a set of all possible states S of the global environment, a set of actions A1, . . . ,AN , and a set of

local observations of the environment O1, . . . ,ON . The ith agent∗, i ∈ {1, . . . , N}, chooses its actions from Ai

and receives observations from Oi . Furthermore, given a local observation, the ith agent chooses its action via a

deterministic policy µ
(i)

θ(i)
: Oi → Ai , which is parameterized by the real-valued vector θ(i). For the complete system

of N-agents, we define the joint-policy µθ : O → A as µθ := (µ
(1)

θ(1)
, µ
(2)

θ(2)
, . . . , µ

(N)

θ(N)
), where θ := (θ(1), θ(2), . . . , θ(N)),

O := O1 × O2 × · · · × ON , and A := A1 × A2 × · · · × AN . At any given time t ∈ N, we denote the action taken by

Agent i by a
(i)
t . The time-dependent action a

(i)
t is defined as

a
(i)
t := (a

(i)
m,t, a

(i)
c,t) ∈ Ai, (1)

where a
(i)
m,t is the physical action taken by Agent i through its actuators, and a

(i)
c,t is a virtual action to be communicated

to the other agents. As previously described, Agent i uses its local policy µ
(i)

θ(i)
to generate actions a

(i)
t at each t, thus,

we may write

a
(i)
t := (a

(i)
m,t, a

(i)
c,t) = µ

(i)

θ(i)
(o
(i)
t), o

(i)
t ∈ Oi .

∗We use superscript (i) to denote the ith agent.

2

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

The state-transition model T determines the probability of the next global state given the current state and the

actions taken by all the agents, i.e., T : S × A1 × · · · × AN × S
′→ [0, 1]. Since we consider the operation of a team

of agents, and not individual agents, we consider collaborative rewards. To be precise, we consider the collaborative

reward r , which depends on the global states, the actions, and the next state, i.e. r : S × A1 × · · · × AN × S
′ → R.

Therefore, the goal is to maximize the expectation of the sum of all future rewards
∑∞

t=0 γ
trt , where γ ∈ (0, 1) is a

discount factor, and rt is the reward earned at time step t.

!"#$%&'(!%)$)*

+#,)%-#."#$
/"#0-%1

!"#$%&$&

'(#)*%

230$%&*$

+,-$./0#)*%-

'(#10#*.2/"#0-%1 '(#10#*.2

'(#)*%

'3$%#42

/"#0-%4 '(#10#*.5/"#0-%4 '(#10#*.5

'3$%#45

2*$-%(4

674$%(*&$.

2*$-%(1

674$%(*&$.
5"00&6"0

8*991%)(0#)*%4:$#6*.;

7)08&' <4=$(#*.

+,-$./0#)*%-

9-')*:(+,&'8&$)-#

Fig. 1 Overview of decentralized policy (actor) and central critic.

We consider a two-agent system, presented in Figure 1, as a concrete example of the proposed framework. Both

Agents 1 and 2 have onboard actors that compute their local control policies µ
(i)

θ(i)
, i ∈ {1, 2}. Additionally, using

the communication network, each agent interacts with a centralized critic, which is an algorithm that evaluates the

performance (value functions) of the agents. Further details on the actor-critic framework can be found in [14]. Each

actor determines the action taken by its agent using the signals from onboard sensors like cameras and IMUs, and

the virtual action a
(i)
c,t of the other agent (see Eqn. (1)). We refer to the virtual actions shared between the agents as

messages in Figure 1. In addition to the actions taken by the agents, the central critic requires all the observations

available to each agent in order to evaluate the performance of the multi-agent system. The sensor measurements,

actions, and messages (virtual actions) can be communicated easily. However, the communication of high-resolution

raw images recorded by the onboard cameras of each agent creates a considerable network burden and thus presents a

significant challenge. In order to mitigate this issue, each agent is also equipped with an autoencoder which transforms

the raw camera images into low dimensional features (encoded images). Then, the sensor measurements, messages,

actions, and low dimensional features, which we collectively refer to as abstract observations, can be transmitted with

ease between the agents and the central critic. This is due to the fact that the encoder compresses the raw images

significantly. To summarize, the agents communicate their respective virtual actions with each other while transmitting

their abstract observations to the central critic. The critic then communicates the performance evaluation back to each

agent.

For the considered multi-agent setup, we need to address the two major components: i) the central critic, and ii)

the autoencoders and actors onboard each agent. We refer to the actor and the autoencoder jointly as the actor-encoder.

Central Critic: Reinforcement learning algorithms developed for single agents can be applied to multi-agent systems

by using the centralized training with decentralized execution (CTDE) framework, see, for e.g. [7, 8]. Similar to the

work in [7], we apply the CTDE framework to the deep deterministic policy gradient (DDPG) algorithm [3], which

is a variant of the deterministic policy gradient (DPG) [15]. In the DDPG algorithm, the critic estimates the true

state-action value function qµθ (s, a) for the joint policy µθ using the following recursive equation:

qµθ (st, at) = E[r(st, at) + γqµθ (st+1, at+1)], (2)

where the expectation E is taken with respect to the state-action distribution determined by the policy µ and the

underlying MDP, and γ ∈ (0, 1) is the discount factor. The critic cannot directly use (2) to estimate qµθ (s, a), since it

3

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

does not have access to the true global state st . Instead, the proposed critic uses the abstract observations transmitted

from each agent to estimate the state-action value function. The critic approximates the state-action value function

qµθ (s, a) by Q(o, a;w), where w is a parameter, and a is the global action (actions taken by all the agents), which,

using (1), can be expressed as

a = (a(1), a(2)), a(i) = (a
(i)
m , a

(i)
c), i ∈ {1, 2}.

Note that we have dropped the time-dependence of a on t for brevity. Additionally, o is the concatenation of all the

observations communicated by all the agents to the critic. Therefore, o contains the sensor measurements collected

by each agent, the messages containing the virtual actions transmitted between the agents, and the abstract visual

observations (encoded images) compressed by the autoencoders onboard each agent. The parameter w in Q(o, a;w)

is estimated by minimizing the temporal difference (TD) error [16]. The loss function l(w) to be minimized for the

estimation of Q(o, a;w) is

l(w) =
1

M

M∑

m=1

(Q(om, am;w) − ym)
2, ym = rm + γQ(o

′
m, µθ (o

′
m);w), (3)

where M transitions are uniform random samples from a replay buffer Dreplay, which stores the recently observed L

transitions, i.e.:

Dreplay := ((ot−L, at−L, rt−L, o
′
t−L) , . . . , (ot−1, at−1, rt−1, o

′
t−1)).

Here, each transition (o, a, r, o′) consists of the concatenated abstract observation o, the global action by all agents a,

collaborative reward r , and the next observation o′. Our use of the replay buffer Dreplay is motivated by its successful

application to Deep Reinforcement Learning [2, 3]. However, the size of replay buffers used in [2, 3] is million samples.

For the type of multi-agent systems that we consider, which use high-resolution images, the storage of such replay

buffers would be infeasible†. This is where our novel approach of encoding raw images is advantageous, since the

compressed images require significantly less memory resource to store. Thus, our approach of encoding high-resolution

images not only enables low-burden communication, but also the storage of replay buffers, which is crucial for the

operation of the central critic.

Autoencoders and Actors: We now explain the autoencoders and actors onboard each agent. As aforementioned, the

central critic requires the concatenated observation o, a major component of which is the set of compressed images

recorded by each agent’s onboard camera. This compression is performed by autoencoders [13] onboard each agent.

The efficacy of using autoencoders in reinforcement learning was empirically demonstrated in [17]. In the proposed

approach, the autoencoders are learned on-line. The autoencoder consists of an encoder and a decoder. To ensure that

the encoder does not remove the principle components from the raw image, an image is reconstructed by the decoder

from the encoded image and compared to the original raw image. This comparison then guides the learning of the

encoder. We denote the encoder onboard Agent i by f (·; ξ
(i)
e), where ξ

(i)
e are the parameters to be learned. Given a set

of images I, the encoder compresses the images to a pre-specified dimension D, i.e. f (·; ξ
(i)
e) : I → RD . The decoder,

denoted by g(·; ξ
(i)

d
) : RD → I, performs the reconstruction. Here, ξ

(i)

d
are the parameters of the decoder. The encoder

and decoder parameters, ξ
(i)
e and ξ

(i)

d
, respectively, are learned by recursively minimizing the loss:

l(ξ
(i)
e , ξ

(i)

d
) =

1

P

P∑

p=1

d(v
(i)
p , g(f (v

(i)
p ; ξ

(i)
e); ξ

(i)

d
)), (4)

where d(·, ·) is a difference metric‡ between two images. Additionally, {v
(i)
p }

P
p=1

is the mini-batch sample from image

data buffer D
(i)
image

stored locally on the ith agent and contains the recently observed camera images taken by the agent.

Upon completion of the compression, each agent communicates its encoded image f (v
(i)
p ; ξ

(i)
e) to the central critic,

which is then used to construct the concatenated observation o.

Once the central critic computes the approximate state-action value function Q(o, a;w) using (3), it communicates

this value and the associated mini-batch back to each agent. The onboard actors use these to improve their local policies

µ
(i)

θ(i)
, i ∈ {1, 2}. As previously mentioned, the actors use deep deterministic policy gradient (DDPG) algorithm [3] to

†A million color images with 200 × 200 resolution would take 480 Gigabyte of memory to store.
‡Mean squared error is an example of metric between images.

4

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

improve the policies of their agents by estimating the policy gradient based on the communicated mini-batch as

∇θ(i) J ≈
1

P

P∑

p=1

∇a(i)Q(o, a
(i);w)|

o=op,a(i)=µ
(i)

θ (i)
(op)
∇θ(i) µ

(i)

θ(i)
(o)|op

. (5)

Here, op is the concatenated observation contained in the communicated mini-batch. Then, each agent’s local policy

is improved by recursively adding the policy gradient ∇θ(i) J to the current policy µ
(i)

θ(i)
with a decaying gain (step-size)

in order to improve the expected sum of the future rewards. Finally, we would like to mention the process by which

each agent optimizes the messages (virtual actions a
(i)
c,t in (1)) to communicate with other agents. This optimization is

automatically handled by the reinforcement learning framework via the inclusion of the global action (action taken by

all the agents) in the collaborative reward function rt , which we previously defined to be

rt = r(st, at),

and where st is the global state. Since, by (1),

at = (a
(1)
t , a

(2)
t), and a

(i)
t := (a

(i)
m,t, a

(i)
c,t),

we see that the message/virtual actions are encoded in the collaborative reward rt .

In conclusion, the proposed reinforcement learning algorithm has 3 parameter updates: (1) autoencoder, (2) critic,

and (3) policy update. Since the algorithm has multiple parameters being updated simultaneously, we require that

each parameter update uses different time-scales for the associated step-sizes. This is because, as explained in [14],

the policy needs to be updated slowly so that the critic can track the changes of the Markov chain (Controlled MDP).

Similarly, we employ the approach of the multiple-time-scale algorithm [18]. The autoencoder is updated at the slowest

time-scale, and the critic is updated at the fastest time-scale. This allows the policy evaluation performed by the critic

to track the slowly varying changes of the Markov chain.

III. Experiments
We develop a 3D simulation environment to test and validate the proposed algorithms for the two-agent system

illustrated in Figure 1. The 3D environment simulates an urban scene, in which two unmanned aerial vehicles (UAVs)

operate collaboratively to identify and approach a person of interest. The two UAVs represent the agents in our

framework. The first agent flies at a low-altitude and is equipped with a front-view camera and sensors measuring

its position and velocity. The second agent operates at a higher altitude and is equipped with a down-facing camera.

The first agent’s front-view camera images are not sufficient to allow it to search and move towards the target person.

Therefore, it must also rely on the down-facing camera images taken by the second agent. Figure 2 illustrates the

positions of the agents in the simulation environment.

We notice that similar problems have been considered in cooperative path-following tasks in [1, 19], where the two

heterogeneous UAVs had to execute a cooperative road search mission. Here we focus on decision making for strategy

development through sharing of information, while in [1, 19] the focus was on cooperative path following, where the

paths were generated apriori. The framework of this paper can lead to (near) real-time optimal navigation algorithms

that a cooperative path following framework can use efficiently.

A. The 3D Simulation Environment

We now explain the development of the simulator and the setup of the experiments. We use Unity 3D [20], a game

development editor, to construct the environment. Using the physics engine of the editor, we can conveniently model

the rigid-body dynamics of the agents. The physics engine updates the state of the rigid body dynamics at 60 Hz in the

game time§. A proportional–integral–derivative (PID) controller generates the moment and the force exerted on the

agent to track the velocity commands given by the onboard actors. The first agent can execute forward, backward, and

yaw movements, while the high-altitude second agent hovers at a fixed position. The proposed algorithm interacts with

the game environment at 10 Hz in game time. Furthermore, the game engine checks for collisions of the agents with

all objects in the scene such as buildings, cars, and traffic signs. Such a collision results in a negative reward for the

respective agent, thus encouraging a collision-free safe behavior. Additionally, an important feature of our simulator is

the realistic visualization of the 3D environment. This allows us to simulate the capture of high-resolution images by

cameras onboard each agent.

§The game engine keeps track of the states of the environment with its own timestamps that we refer to as game time.

5

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

!"#$%#&'()

*(+$,-./.01#$2,3

4/5"$,-./.01#$2,3

Fig. 2 The 3D Environment with two agents: the first agent (low-altitude UAV)’s task is to reach the person,

and the second agent (high-altitude UAV) sends messages to the first agent to share the top-view. An illustrative

video of the environment can be found [here].

(a) Stacked 3 frames of front view by the low-altitude UAV. (b) Color image of top view by the high-altitude UAV.

Fig. 3 The high dimensional visual observations: (1) The stacked frames image (size: 3 × 100 × 200) contains

the images taken in the recent three frames; (2) The color image (size: 3 × 200 × 200) has information of the

person’s location.

6

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

https://youtu.be/gNsxl0RGhdA

To train the various components of the proposed algorithm (central critic, onboard actors, and autoencoders), we

run episodes of the collaborative search task in the simulator. As mentioned before, the two-agent team is tasked

with finding and approaching the target person. The first agent (low-altitude UAV) and the second agent (high-altitude

UAV) must communicate with each other and the central critic so that they can efficiently use each other’s different

observations to accomplish the task. Each episode is designed as follows:

1) Episode initialization: Both the target person and the first agent start at uniformly random positions and

orientations. These initial positions always lie on the intersection in Figure 2. The second agent is initialized at

a fixed position overlooking the intersection.

2) Episode termination: An episode is terminated, when the two-agent team either succeeds or fails. The team

succeeds, if the first agent gets within 3 meters of the target person. Conversely, the team fails, if the first agent

either gets more than 30 meters away from the target person or collides with an object.

3) Reward design: In order to train the central critic and the agents’ actors and autoencoders, we design the

rewards as follows: the successful completion of the task leads to a reward of 100, while a failure leads to a

reward of -100. Furthermore, the central critic receives a reward of 1 for every time step, over which the first

agent moves closer to the target person. Finally, we impose a reward of -0.05 per time step as a time penalty.

During each episode, the two-agent team operates using the method described in Section II. Both agents commu-

nicate messages (virtual actions) between each other. Additionally, each agent uses its autoencoder to compress its

camera images and communicates the abstract observations (sensor measurements, compressed images, and actions)

to the central critic. The central critic uses these inputs from the agents to approximate the state-action values and com-

municates it back to each agent along with the associated mini-batches. Each agent’s actor then uses this information

to improve its policy and take actions. This process repeats at each time step. The design of rewards ensures that over

multiple episodes the two-agent team learns to collaborate and ensure that the task is completed, i.e., the first agent

successfully approaches the target person.

B. Implementation of Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

Algorithm 1 describes the proposed multi-agent reinforcement learning framework. Compared to the MADDPG

algorithm [7], the proposed framework has an additional component, an autoencoder that encodes high dimensional

images into low dimensional features to be used by the central critic. As mentioned previously, with this extension, we

are able to keep the memory resource usage for replay buffer within a reasonable range.

We apply the (MADDPG) [7] algorithm to the two agent system explained in Section III.A. Each agent has a

different set of sensors and actuators. The first agent senses its 12-dimensional rigid body state, the stacked frames

of the front-view camera mounted on it as shown in Figure 3a, and receives messages from the second agent. The

first agent is actuated by a PID controller, which receives forward, backward, and yaw commands from its onboard

actor. The second agent observes the color images of the top view as shown in Figure 3b and the messages sent by the

other agent. The second agent does not have any actuators. The second agent’s action contains only communication

messages to inform the first agent of the location of the person inferred from the top view images. The communication

messages sent at the current time step become available to the other agents in the next time step. The communication

messages contain the virtual actions generated by the onboard actors in Figure 4.

As mentioned earlier, the performance of the agents is evaluated by the central critic. The central critic uses the

concatenated observation o formulated using the messages communicated by each agent. The agents communicate their

encoded images, sensor measurements, and the messages received from other agents to the central critic. Therefore,

for our two-agent system, the concatenated observation available to the central critic is

o := (o(1), o(2), f (v(1); ξ
(1)
e), f (v(2); ξ

(2)
e),m

(1),m(2)),

where o(i), i ∈ {1, 2}, denotes the ith agent’s sensor measurements, f (v(i); ξ
(i)
e) denotes the encoded image from the ith

agent, m(i) denotes the messages received by the ith agent, v(1) denotes the first agent’s stacked frame image in Figure 3a,

and v
(2) denotes the second agent’s color image, as in Figure 3b.

The first agent’s actor selects an action a
(1)
m to actuate the agent and an action a

(1)
c to communicate based on the local

observations and received messages. At the next time-step, the communicated messages update the received messages,

i.e. m(2) ← a
(1)
c and m(1) ← a

(2)
c . As defined in (1), the extended action by the first agent is

a(1) := (a
(1)
m , a

(1)
c),

7

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

!"#$%&'()"*+%,(#

!"#$%&'&(&)**&(&+**

-.&/)()"0,%1(

!"#$%&',

-$./01234.2$5

"678$

./09/:42"/0 5$./09/:42"/0

2(&$/+"34#(+5%$0/.

!"#$%&'&(&+)

6(&(05()"7(##%1(#

!"#$%&',

8&$9%$/+"&/,,%.)

!"#$%&)

7(##%1("$/"#(.)

;9"3247:&7.2"/0<

!"#$%&',

-.&/)(+ :(&/)(+

8&$/+

89$/;-.&/)(+

Fig. 4 The computation graph of the actor-encoder network for the first agent. The convolution layers are

shared by the autoencoder and the actor. The vector observation is the stacked 3 frames of 12-dimensional state

of the rigid body. Batch normalization [21] is used between layers to keep the signals within an appropriate

scale. The second agent uses the same neural network without generating actuator command.

where we have dropped the temporal dependence. We also define the extended abstract observation for the first agent

as

o(1) := (o(1), f (v(1); ξ
(1)
e), m(1)).

Similarly, we define the extended action a(2) := (a
(2)
m , a

(2)
c) and observation o(2) := (o(2), f (v(2); ξ

(2)
e),m

(2)) for the second

agent. The extended abstract observation o = (o(1), o(2)) and the extended action (a(1), a(2)) are the inputs to the central

critic network, as illustrated in Figure 5, and are used to calculate the state-action value.

!"#$%&'&(&)*&+&',&+&',&+&',&+&',

!"#$%&$&'()*$+,-#.(%

/-0$+'12

3#-#$456#.(%

7-89$

!"#$%&*&+&',&+&',

!"#$%&$&'-6#.(%

/-0$+':/-0$+'1 /-0$+';
/-0$+'<

/-0$+'=

Fig. 5 The computation graph of the critic-network that uses the extended observation, which is the concate-

nation of encoded images, the received messages and the vector observations.

8

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

Algorithm 1 The Extended MADDPG for the Multi-Agent RL illustrated in Figure 2.

1: for episode=1 to M do

2: Choose the step size function: ǫ1(t), ǫ2(t), ǫ3(t).

3: Initialize parameters: θ(1), θ(2), θ
(1)
target, θ

(2)
target, w, wtarget, ξ

(1)
e , ξ

(1)

d
, ξ
(2)
e , ξ

(2)

d
.

4: Initialize a random process Nt , for actuator action exploration.

5: Central critic: Receive initial abstract observation o ← (o(1), o(2), f (v(1); ξ
(1)
e), f (v(2); ξ

(2)
e),m

(1),m(2))

using encoders f (·; ξ
(i)
e).

6: for t=1 to max-episode-length do

7: for agent i= 1,2 do

8: Select the extended action a(i) = µ
(i)

θ(i)
(o(i)).

9: Execute exploratory action i.e. a
(i)
m +Nt on the environment and receive reward r .

10: Collect the new sensor observation o(i), v(i) on the state of the environment.

11: Locally store the raw images (v(i)) in the image buffer D
(i)
image

.

12: Local encoder update:

13: Sample a random mini-batchM
(i)
image from D

(i)
image.

14: Update the actor-encoders using gradient descent with the step-size ǫ3(t) to minimize the loss,

l(ξ
(i)
e , ξ

(i)

d
) =

1

M

M∑

m=1

d(vm, g(f (vm; ξ
(i)
e); ξ

(i)

d
)), vm ∈ M

(i)
image
.

15: Local actor update:

16: Receive the sampled mini-batchM from the central critic.

17: Update the ist actor with the step-size ǫ2(t) using the sampled policy gradient:

∇θ(i) J ≈
1

M

M∑

m=1

∇a(i)Q(om, a
(i), a

(i−)
m ;w)|a(i)=µ(i)(om)∇θ(i) µ

(i)

θ(i)
(om),

18: where i− = 2 if i = 1 and vice versa.

19: Update the parameters of the target networks θ
(i)
target ← τθ

(i)
+ (1 − τ)θ

(i)
target.

20: Communication:

21: m(i−) ← a
(i)
c and send it to (i−)th agent. Receive message m(i) ← a

(i−)
c from (i−)th agent.

22: end for

23: for Central Critic do

24: Receive (o(1), o(2), f (v(1); ξ
(1)
e), f (v(2); ξ

(2)
e), m(1),m(2)) from the local agents.

25: o′→ (o(1), o(2), f (v(1); ξ
(1)
e), f (v(2); ξ

(2)
e), m(1),m(2)).

26: Store the transition (o, a(1), a(2), r, o′) in replay buffer Dreplay.

27: Sample a random mini-batchM from Dreplay

M = ((o1, a
(1)

1
, a
(2)

1
, r1, o

′
1) , . . . , (oM, a

(1)

M
, a
(2)

M
, rM, o

′
M)).

28: SendM and w to all local agents.

29: Set ym = rm + γQ(o
′
m, a

(1), a(2);wtarget)|a(1)=µ(1)(o′m ;θ
(1)
target),a

(2)
=µ(2)(o′m ;θ

(2)
target)

.

30: Update the central critic parameter w with the step-size ǫ1(t) by minimizing the loss,

l(w) =
1

M

M∑

m=1

(Q(om, a
(1)
m , a

(2)
m ;w) − ym)

2.

31: Update the parameters of the target networks wtarget ← τw + (1 − τ)wtarget.

32: end for

33: o← o′.

34: end for

35: end for

9

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

IV. Simulation Results
We ran one million simulation steps to verify the feasibility of the proposed algorithm. The reinforcement learning

algorithm improves the mean rewards per episode, as shown in Figure 6a. Also, the rate of the successful episodes

has been improved, as shown in Figure 7a. However, the success indicator values in Figure 7a show that only 1 out of

4 trials is successful. There are a few possible reasons why the performance of the trained policy is not satisfactory.

First, the incomplete state observation is a fundamental challenge for the Markov assumption based reinforcement

algorithms. Our proposed algorithm assumes that the autoencoder’s image compression preserves useful information

for the task. However, the loss function for the autoencoder in (4) only considers the mean squared error between the

raw image and the reconstructed image. Without incorporating the reward of the task in the training of the autoencoder

might result in the loss of the state information, which is necessary for the successful task completion.

!"

!#

$

#

"

$ $%# $%" $%& $%' $%($%)

*+,-./0-12

3+44+562

#$$.1-7%.358%.98:%.;3-<6.=-><7?@

(a) Moving average of the mean rewards.

!

"

#

$

%

& &'(&'! &'" &'# &'$ &'%

)*+,-./,01

2*33*451

(&&-0,6'-247'-./8'-9,7'-:2,;5-<,=;68>

(b) Moving standard deviation of the mean rewards.

Fig. 6 Moving average and standard deviation of the mean rewards per episode.

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

! !"$!"% !"& !"' !"# !"(

)*+,-./,01

2*33*451

$!!-0,6"-247"-879"-:.;<<,11- =5>*<?/46@

(a) Moving average of the success indicator.

!

!"#

!"$

!"%

!"&

!"'

!"(

! !"# !"$!"% !"& !"' !"(

)*+,-./,01

2*33*451

#!!-0,6"-247"-./8"-9,7"-:.;<<,11-=58*<>/46?

(b) Moving standard deviation of the success indicator.

Fig. 7 Success indicator (1: successful episode, 0: otherwise).

In addition to the incomplete state observation, another challenge would be the uniform random initialization of an

episode. Figure 6b shows large variations of mean reward per episode despite decaying learning rate. As the training

progresses, the step-size (or learning rate) is decreased as shown in Figure 9 so that the actors (control policy) eventually

10

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

!

!"!#

!"$

!"$#

!"%

!"%#

! !"$!"% !"& !"' !"# !"(

)
*
+
,
-.
/
0
+
1*
2
-3
11
4
1

567*-.8*9:
)6;;64,:

<084*,=42*1-$

<084*,=42*1-%

Fig. 8 Mean squared error (MSE) between the raw images and the images reconstructed by the autoencoders.

Autoencoder 1 processes the stacked frames in Figure 3a and Autoencoder 2 processes the color images in

Figure 3b.

stop evolving. However, there are still large variations in the mean reward. This suggests that the variation is mostly

due to the uniformly random initialization, since the policy itself is being very slowly updated in the later training

iterations. Obviously, robustness to the random initialization is desired for the reinforcement learning algorithm.

However, the uniform randomness here might not be appropriate, since it makes difficult for the reinforcement learning

algorithm to recognize patterns. Also, the environments (Atari games, robot dynamics, etc.) used in the successful

deep reinforcement learning papers [2, 3] are more deterministic regarding the initialization compared to our simulation

environment.

!"#$%&

!"#$%'

!"#$%(

!"#$%)

% %"! %") %"(%"' %"& %"*

+,
-
".
/
01
23

4563./7389
:5225,;9

38952,;!

38952,;)

38952,;(

Fig. 9 The optimization scheduler decays the step-sizes to update the parameters. The fastest step-size ǫ1(t) is

for the central critic update, slower step-size ǫ2(t) is for the actors , and the slowest ǫ3(t) is for the encoder.

V. Conclusion
We present a reinforcement learning framework that takes into account decision making regarding sharing local

information between agents for collaborative tasks. We use autoencoders to reduce the dimensions of the camera images

taken by each agent. The encoded visual observations are fed to an actor-network, which decides communication

messages to the other agents. The data compression by local agents makes it possible to implement deep reinforcement

learning algorithms [2, 3], which use a large replay buffer (106 samples). To validate the feasibility of the proposed

11

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

framework, we develop a 3D simulation environment that provides camera images from different perspectives of the two

heterogeneous agents. Simulation results show that the algorithm improves the performance of a given collaborative

task.

A. Future Work

The proposed idea to use autoencoders to compress local visual observations in order to send it to the central critic,

while keeping the usage of the communication resource economically feasible, is convincing. In the algorithm, each

agent updates the autoencoder independently of the other agent. Minimizing the mean squared error of the autoencoder

without considering the collaborative task might not lead to useful image encoding. In order to learn the dependence

between local visual observations and the collaborative task reward, the agents need to share the raw high dimensional

observations. However, sharing the high-dimensional data over the network cannot be as frequent as sharing the low-

dimensional compressed image, due to communication resource constraints. So the data sharing will be asynchronous

and in multiple time-scales, depending on the types of data being shared. Multiple time-scales and the asynchronous

stochastic algorithm from [18] have the potential to address this issue. Intuitively, communication protocols should

not change drastically for the agents to perform collaborative tasks. Hence, the use of communication networks to

send the high dimensional local visual observation to the central critic, in order to update the communication protocol

(autoencoder), should be less frequent than the update of the local policy for each agent.

Furthermore, navigation tasks in the 3D environment require the reinforcement learning algorithm to memorize

the previously taken path. Humans navigate by constructing a map while memorizing the previous path. In other

words, the human estimates the global state (location of the human in the map) based on the previous trajectory (taken

path). So the 3D navigation is inherently a partially observable Markov decision process (POMDP), since the global

state (the location) is hidden. To address the challenge of the POMDP, the use of the internal memory to predict

or infer hidden states in the context of the reinforcement learning task was proposed in [22, 23]. For the 3D game

environment, a recurrent neural network was employed to overcome the inherent partial observability of the navigation

task [24]. However, the training of the recurrent neural network in [22–24] only uses the Bellman optimality equation,

which does not consider how well the recurrent neural network can predict or infer hidden states. Maximum likelihood

estimate (MLE) framework is a natural approach to infer hidden states. In [25], the authors proposed an on-line HMM

estimation based reinforcement learning algorithm, which converges to the maximum likelihood estimate.

Advantages of using autoencoders or recurrent neural networks in reinforcement learning tasks can be from their

capability to mimic the true environment, in the sense that the learning algorithm can predict or infer hidden states. The

future work will focus on devising algorithms, which converge to the maximum likelihood estimate of the environment

model that uses the autoencoder and the recurrent neural network. The estimated environment model will be used

to construct state estimator. Reinforcement learning algorithms with the state estimator will be applied to various

collaborative tasks in the 3D simulation environment.

Deploying the vision-based reinforcement learning to real cooperative missions as the ones in [1] has the potential

to improve the resilience of multiagent systems to communication failures. For example, camera images contain

the information on the location of other agents, which can be extrapolated to achieve coordination in the presence

of communication failures. However, training of such intelligent agents requires significant random exploration to

determine the optimal policies. Therefore, a method to safely explore the policy space is required to deploy the

reinforcement learning algorithms on real missions. The future work will investigate methods to autonomously

constrain the policy space, while learning the optimal policy.

Acknowledgment
This material is based upon work supported by the National Science Foundation under National Robotics Initiative

grant #1830639 and Air Force Office of Scientific Research grant #FA9550-18-1-0269.

References
[1] Kaminer, I., Pascoal, A. M., Xargay, E., Hovakimyan, N., Cichella, V., and Dobrokhodov, V., Time-Critical Cooperative

Control of Autonomous Air Vehicles, Butterworth-Heinemann, 2017.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al., “Human-level control through deep reinforcement learning,” Nature, Vol. 518, No. 7540, 2015, p. 529.

12

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

[3] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D., “Continuous control with

deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] Shalev-Shwartz, S., Shammah, S., and Shashua, A., “Safe, multi-agent, reinforcement learning for autonomous driving,” arXiv

preprint arXiv:1610.03295, 2016.

[5] Busoniu, L., Babuska, R., and De Schutter, B., “A comprehensive survey of multiagent reinforcement learning,” IEEE Trans.

Systems, Man, and Cybernetics, Part C, Vol. 38, No. 2, 2008, pp. 156–172.

[6] Matignon, L., Laurent, G. J., and Le Fort-Piat, N., “Independent reinforcement learners in cooperative Markov games: A

survey regarding coordination problems,” The Knowledge Engineering Review, Vol. 27, No. 1, 2012, pp. 1–31.

[7] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I., “Multi-agent actor-critic for mixed cooperative-

competitive environments,” Advances in Neural Information Processing Systems, 2017, pp. 6382–6393.

[8] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S., “Counterfactual multi-agent policy gradients,” arXiv

preprint arXiv:1705.08926, 2017.

[9] Watkins, C. J., and Dayan, P., “Q-learning,” Machine learning, Vol. 8, No. 3-4, 1992, pp. 279–292.

[10] Sutton, R. S., and Barto, A. G., Reinforcement learning: An introduction, Vol. 1, MIT press Cambridge, 1998.

[11] Foerster, J., Assael, I. A., de Freitas, N., and Whiteson, S., “Learning to communicate with deep multi-agent reinforcement

learning,” Advances in Neural Information Processing Systems, 2016, pp. 2137–2145.

[12] Mao, H., Ni, Y., Gong, Z., Ke, W., Ma, C., Xiao, Y., Wang, Y., Wang, J., Wang, Q., Liu, X., et al., “ACCNet: Actor-Coordinator-

Critic Net for ‘Learning-to-Communicate’ with deep multi-agent reinforcement learning,” arXiv preprint arXiv:1706.03235,

2017.

[13] Hinton, G. E., and Salakhutdinov, R. R., “Reducing the dimensionality of data with neural networks,” science, Vol. 313, No.

5786, 2006, pp. 504–507.

[14] Konda, V. R., and Tsitsiklis, J. N., “Actor-critic algorithms,” Advances in neural information processing systems, 2000, pp.

1008–1014.

[15] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M., “Deterministic policy gradient algorithms,”

ICML, 2014.

[16] Tsitsiklis, J. N., and Van Roy, B., “Analysis of temporal-diffference learning with function approximation,” Advances in neural

information processing systems, 1997, pp. 1075–1081.

[17] Lange, S., Riedmiller, M., and Voigtlander, A., “Autonomous reinforcement learning on raw visual input data in a real world

application,” Neural Networks (IJCNN), The 2012 International Joint Conference on, IEEE, 2012, pp. 1–8.

[18] Kushner, H., and Yin, G. G., Stochastic approximation and recursive algorithms and applications, Vol. 35, Springer Science

& Business Media, 2003.

[19] Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A. M., Hovakimyan, N., and Cao, C., “Time-critical cooperative control of

multiple autonomous vehicles: Robust distributed strategies for path-following control and time-coordination over dynamic

communications networks,” IEEE Control Systems, Vol. 32, No. 5, 2012, pp. 49–73.

[20] Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., and Lange, D., “Unity: A general platform for intelligent

agents,” arXiv preprint arXiv:1809.02627, 2018.

[21] Ioffe, S., and Szegedy, C., “Batch normalization: Accelerating deep network training by reducing internal covariate shift,”

arXiv preprint arXiv:1502.03167, 2015.

[22] Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D., “Memory-based control with recurrent neural networks,” arXiv preprint

arXiv:1512.04455, 2015.

[23] Hausknecht, M., and Stone, P., “Deep recurrent Q-learning for partially observable MDPs,” CoRR, abs/1507.06527, 2015.

[24] Lample, G., and Chaplot, D. S., “Playing FPS Games with Deep Reinforcement Learning.” AAAI, 2017, pp. 2140–2146.

[25] Yoon, H.-J., Lee, D., and Hovakimyan, N., “Hidden Markov Model Estimation-Based Q-learning for Partially Observable

Markov Decision Process,” arXiv preprint arXiv:1809.06401, 2018.

13

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
IL

L
IN

O
IS

 o
n

A
ug

us
t 1

5,
 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

56

	Introduction
	Related Work

	Method
	Experiments
	The 3D Simulation Environment
	Implementation of Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

	Simulation Results
	Conclusion
	Future Work

